“HORMON PERTUMBUHAN TANAMAN”
Hormon tumbuhan, atau pernah dikenal juga dengan fitohormon, adalah sekumpulan senyawa organik bukan hara (nutrien), baik yang terbentuk secara alami maupun dibuat oleh manusia, yang dalam kadar sangat kecil (di bawah satu milimol per liter, bahkan dapat hanya satu mikromol per liter) mendorong, menghambat, atau mengubah pertumbuhan, perkembangan, dan pergerakan (taksis) tumbuhan. Hormon tumbuhan (phytohormones) secara fisiologi adalah penyampai pesan antar sel yang dibutuhkan untuk mengontrol seluruh daur hidup tumbuhan, diantaranya perkecambahan, perakaran, pertumbuhan, pembungaan dan pembuahan. Sebagai tambahan, hormon tumbuhan dihasilkan sebagai respon terhadap berbagai faktor lingkungan kelebihan nutrisi, kondisi kekeringan, cahaya, suhu dan stress baik secara kimia maupun fisik. Oleh karena itu ketersediaan hormon sangat dipengaruhi oleh musim dan lingkungan.
Pada umumnya dikenal lima kelompok hormon tumbuhan: auxins, cytokinins, gibberellins, abscisic acid and ethylene. Namun demikian menurut perkembangan riset terbaru ditemukan molekul aktif yang termasuk zat pengatur tumbuh dari golongan polyamines seperti putrescine or spermidine.
Penggunaan istilah "hormon" sendiri menggunakan analogi fungsi hormon pada hewan. Namun demikian, berbeda dari hewan, hormon tumbuhan dapat bersifat endogen, dihasilkan sendiri oleh individu yang bersangkutan, maupun eksogen, diberikan dari luar sistem individu. Hormon eksogen dapat juga merupakan bahan non-alami (sintetik, tidak dibuat dari ekstraksi tumbuhan). Oleh karena itu, untuk mengakomodasi perbedaan ini dipakai pula istilah zat pengatur tumbuh (bahasa Inggris: plant growth regulator/substances).
Pembentukan
Hormon tumbuhan merupakan bagian dari sistem pengaturan pertumbuhan dan perkembangan tumbuhan. Kehadirannya di dalam sel pada kadar yang sangat rendah menjadi prekursor ("pemicu") proses transkripsi RNA. Hormon tumbuhan sendiri dirangsang pembentukannya melalui signal berupa aktivitas senyawa-senyawa reseptor sebagai tanggapan atas perubahan lingkungan yang terjadi di luar sel. Kehadiran reseptor akan mendorong reaksi pembentukan hormon tertentu. Apabila konsentrasi suatu hormon di dalam sel telah mencapai tingkat tertentu, atau mencapai suatu nisbah tertentu dengan hormon lainnya, sejumlah gen yang semula tidak aktif akan mulai berekspresi.
Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya.
Hormon tumbuhan tidak dihasilkan oleh suatu kelenjar sebagaimana pada hewan, melainkan dibentuk oleh sel-sel yang terletak di titik-titik tertentu pada tumbuhan, terutama titik tumbuh di bagian pucuk tunas maupun ujung akar. Selanjutnya, hormon akan bekerja pada jaringan di sekitarnya atau, lebih umum, ditranslokasi ke bagian tumbuhan yang lain untuk aktif bekerja di sana. Pergerakan hormon dapat terjadi melalui pembuluh tapis, pembuluh kayu, maupun ruang-ruang antarsel.
Dalam menjalankan perannya, hormon dapat berperan secara tunggal maupun dalam koordinasi dengan kelompok hormon lainnya. Contoh koordinasi antarhormon ditunjukkan oleh proses perkecambahan. Embrio biji tidak tumbuh karena salah satunya dihambat oleh produksi ABA dalam jaringan embrio biji. Pada saat biji berada pada kondisi yang sesuai bagi proses perkecambahan, giberelin dihasilkan. Apabila nisbah giberelin:ABA tidak mencapai titik tertentu, perkecambahan gagal. Apabila nisbah ini melebihi nilai tertentu, terjadi perkecambahan. Apabila nisbah giberelin:ABA masih berada di sekitar ambang, konsentrasi sitokinin menjadi penentu perkecambahan.
Kelompok hormon
Terdapat ratusan hormon tumbuhan atau zat pengatur tumbuh (ZPT) yang dikenal orang, baik yang endogen maupun yang eksogen. Pengelompokan dilakukan untuk memudahkan identifikasi, dan didasarkan terutama berdasarkan perilaku fisiologi yang sama, bukan kemiripan struktur kimia. Pada saat ini dikenal lima kelompok utama hormon tumbuhan, yaitu auksin (bahasa Inggris: auxins), sitokinin (cytokinins), giberelin (gibberellins, GAs), asam absisat (abscisic acid, ABA), dan etilena (etena, ETH). Selain itu, dikenal pula kelompok-kelompok lain yang berfungsi sebagai hormon tumbuhan namun diketahui bekerja untuk beberapa kelompok tumbuhan atau merupakan hormon sintetik, seperti brasinosteroid, asam jasmonat, asam salisilat, dan poliamina. Beberapa senyawa sintetik berperan sebagai inhibitor (penghambat perkembangan).
Ada 9 auksin indol, 14 sitokinin, 52 giberelin, tiga asam absisat, dan satu etilena yang dihasilkan secara alami dan telah diekstraksi orang[1]. ZPT sintetik ada yang memiliki fungsi sama dengan ZPT alami, meskipun secara struktural berbeda. Dalam praktek, seringkali ZPT sintetik (buatan manusia) lebih efektif atau lebih murah bila diaplikasikan untuk kepentingan usaha tani daripada ekstraksi ZPT alami.
Berdasar bioassay diagnostik, auksin, sitokinin, dan giberelin bersifat mendukung pertumbuhan pada konsentrasi fisiologis (yaitu dalam jumlah sangat kecil). Etilena berposisi sebagai pendukung dan penghambat (inhibitor). ABA adalah penghambat pertumbuhan.
a. Auxins
Auxin adalah zat aktif dalam system perakaran. Senyawa ini membantu proses pembiakkan vegetatif. Pada satu sel auxins dapat mempengaruhi pemanjangan cell, pembelahan sel dan pembentukan akar. beberapa type auxins aktif dalam konsentrasi yang sangat rendah antara 0.01 to 10 mg/L.
Auksin digunakan secara luas dalam kultur jaringan untuk merangsang pertumbuhan kalus, akar, suspensi sel dan organ (Gunawan, 1992) Contoh hormon kelompok auksin adalah 2,4 Dikloro Fenoksiasetat (2,4-D), Indol Acetid Acid (IAA), Naftalen Acetid Acid (NAA), atau Indol Buterik Asetat (IBA). Golongan sitokinin berperan untuk menstimulus pembelahan sel dan merangsang pertumbuhan tunas pucuk. Menurut Gunawan (1992), golongan ini sangat penting dalam pengaturan pembelahan sel dan morfogenesis. Sitokinin yang biasa digunakan dalam kultur jaringan adalah kinetin, ziatin, benzilaminopurine (BAP). Dan giberelin untuk diferensiasi atau perbanyakan fungsi sel, terutama pembentukan kalus. Hormon kelompok giberelin adalah GA3, GA2, dan GA1.
Penggunaan hormon tersebut harus tepat dalam perhitungan dosis pemakaian, karena jika terlalu banyak maupun terlalu sedikit dari dosis yang diperlukan justru akan menghambat bahkan berdampak negatif terhadap tanaman kultur. Karena interaksi antar hormon dalam suatu media sangat berpengaruh dalam diferensiasi sel.
Kebutuhan nutrisi mineral untuk tanaman yang dikulturkan secara in-vitro pada dasarnya sama dengan kebutuhan hara tanaman yang ditumbuhakan di tanah. Unsur-unsur hara yang dibutuhkan tanaman di lapangan merupakan kebutuhan pokok yang harus tersedia dalam media kultur jaringan. Antara lain adalah unsur hara makro dan unsur hara mikro. Unsur-unsur hara tersebut diberikan dalam bentuk garam-garam mineral. Komposisi media dan perkembangannya didasarkan pada pendekatan masing-masing peneliti (Gunawan, 1992).
b. Cytokinins
Cytokinins merangsang pembelahan sel, pertumbuhan tunas, dan mengaktifkan gen serta aktifitas metabolis secara umum.pada saat yang sama cytokinins menghambat pembentukan akar. oleh karenanya cytokinin sangat berguna pada proses kultur jaringan dimana dibutuhkan pertumbuhan yang cepat tanpa pembentukan perakaran. secara umum konsntrasi cytokinin yang digunakan antara 0.1 to 10 mg/L
c. Gibberellins
Gibberellin adalah turunan dari asam gibberelat. Merupakan hormon tumbuhan alami yang merangsang pembungaan, pemanjangan batang dan membuka benih yang masih dorman. Ada sekitar 100 jenis gibberellin, namun Gibberellic acid (GA3)-lah yang paling umum digunakan.
d. Abscisic acid
Asam Abscisat (ABA) adalah penghambat pertumbuhan merupakan lawan dari gibberellins: hormon ini memaksa dormansi, mencegah biji dari perkecambahan dan menyebabkan rontoknya daun, bunga dan buah. Secara alami tingginya konsentrasi asam abscisat ini dipicu oleh adanya stress oleh lingkungan misalnya kekeringan.
e. Ethylene
Ethylene merupakan senyawa unik dan hanya dijumpai dalam bentuk gas. senyawa ini memaksa pematangan buah, menyebabkan daun tanggal dan merangsang penuaan. Tanaman sering meningkatkan produksi ethylene sebagai respon terhadap stress dan sebelum mati. Konsentrasi Ethylene fluktuasi terhadap musim untuk mengatur kapan waktu menumbuhkan daun dan kapan mematangkan buah.
f. Polyamines
Polyamines mempunyai peranan besar dalam proses genetis yang paling mendasar seperti sintesis DNA dan ekspresi genetika. Spermine dan spermidine berikatan dengan rantai phosphate dari asam nukleat. Interaksi ini kebanyakkan didasarkan pada interaksi ion elektrostatik antara muatan positif kelompok ammonium dari polyamine dan muatan negatif dari phosphat.
Polyamine adalah kunci dari migrasi sel, perkembangbiakan dan diferensiasi pada tanaman dan hewan. Level metabolis dari polyamine dan prekursor asam amino adalah sangat penting untuk dijaga, oleh karena itu biosynthesis dan degradasinya harus diatur secara ketat.
Polyamine mewakili kelompok hormon pertumbuhan tanaman, namun merekan juga memberikan efek pada kulit, pertumbuhan rambut, kesuburan, depot lemak, integritas pankreatis dan pertumbuhan regenerasi dalam mamalia. Sebagai tambahan, spermine merupakan senyawa penting yang banyak digunakan untuk mengendapkan DNA dalam biologi molekuler. Spermidine menstimulasi aktivitas dari T4 polynucleotida kinase and T7 RNA polymerase dan ini kemudian digunakan sebagai protokol dalam pemanfaatan enzim.
Manfaat
Pemahaman terhadap fitohormon pada masa kini telah membantu peningkatan hasil pertanian dengan ditemukannya berbagai macam zat sintetik yang memiliki pengaruh yang sama dengan fitohormon alami. Aplikasi zat pengatur tumbuh dalam pertanian modern mencakup pengamanan hasil (seperti penggunaan cycocel untuk meningkatkan ketahanan tanaman terhadap lingkungan yang kurang mendukung), memperbesar ukuran dan meningkatkan kualitas produk (misalnya dalam teknologi semangka tanpa biji), atau menyeragamkan waktu berbunga (misalnya dalam aplikasi etilena untuk penyeragaman pembungaan tanaman buah musiman).
Tidak ada komentar:
Posting Komentar